11.2. Параметры освещения. Примеры комбинирования ламп.
- Подробности
- Просмотров: 19473
- Световой поток – полное количество света, излучаемого данным источником. Единица: люмен (лм).
- Сила света – отношение светового потока, направляемого от источника света (лампы) или светильника в пределах элементарного пространственного угла (1 стерадиан), охватывающего данное направление, к этому углу. Или, проще, плотность светового потока. Единица: кандела (кд).
- Кандела – единица измерения силы света – кандела (кд) – соответствует эталону, который входит в Международную систему основных единиц (СИ). Сила света, излучаемая одной свечой, равна одной канделе (лат. candela — свеча).
- Освещенность – поверхностная плотность светового потока, падающего на единицу поверхности, измеряется в люксах. Единица освещенности в системе СИ – люкс (Лк), который равен одному люмену на квадратный метр (Лм/м2), тогда как в системе СГС за единицу освещенности принимают фот (равен 10 000 люксам). Освещенность прямо пропорциональна силе света источника света: то есть при удалении от поверхности освещенность уменьшается и наоборот – чем ближе лампочка к поверхности, тем менее мощной она должна быть. Обычно нормируется горизонтальная освещенность (в горизонтальной плоскости).
- Люкс – единица освещенности, равная одному люмену на квадратный метр. Мощность освещения (величина яркости освещения на единицу площади, то есть принимаемого света), например, яркость солнечного света достигает 100.000 Люкс, в тени -10.000 Люкс, в освещенной комнате – около 300 Люкс.
- Люмен – количество света, излучаемое источником света, то есть испускаемого света. Световой поток, излучаемый в единичном телесном угле, равнонаправленным точечным источником, расположенным в центре сферы единичного радиуса, и имеющий интенсивность, равную 1 канделе. Источник света со световым потоком в 1 Лм, равномерно освещающий поверхность площадью 1 кв. м создает на ней освещенность 1 Лк.
- Яркость – это отношение интенсивности света, излучаемого объектом в заданном направлении к проекции поверхности этого объекта на плоскость, перпендикулярную к этому направлению. Яркость непосредственно связана с уровнем зрительного ощущения, а распределение яркости в поле зрения (например, в интерьере) характеризует качество (или степень комфортности, удобства) освещения. Единица измерения: кд/м2.
- Ультрафиолетовое излучение – оптическое излучение с длиной волны меньшей, чем у видимого излучения. Образует загар на коже человека, убивает микробы, а также вызывает различные фотохимические реакции (превращает обычный кислород воздуха в озон и т.п.). С помощью специальных веществ (люминофоров) – ультрафиолетовое излучение может быть превращено в видимый свет.
- Цветовое ощущение – общее, субъективное ощущение, которое человек испытывает, когда смотрит на источник света. Свет может восприниматься как теплый белый, нейтральный белый, холодный белый. Объективное впечатление от цвета источника света определяется цветовой температурой.
- Кельвин (К)- цветовая температура источника света.
- Цветовая температура аквариумных ламп - мера объективного впечатления от цвета данного источника света. Характеристика источников света, которая определяет цветность ламп и цветовую тональность (теплую, нейтральную или холодную) освещаемого лампами пространства. Выражается в температурной шкале Кельвина (К). Полный спектр освещения излучается солнцем и состоит из различных длин волн – в комбинации они белые или желтые в зависимости от времени суток, но по отдельности они имеют разные цвета. Эти параметры относятся к цветовому спектру излучения лампы. Цветовая температура света (K) в Кельвинах не указывает на спектральный состав света лампы – она показывает, как воспринимает цвет света от данной лампы человеческий глаз. Это характеристика связанная именно с восприятием. Чем ниже цветовая температура, тем больше доля красного, и меньше синего цвета. Чем выше цветовая температура, тем больше доля синего и зеленого.
Белый свет лежит в диапазоне от 5500 до 6500 К. Ниже 5500 К свет лампы становится с желтым или оранжевым оттенком, а при значениях выше 6500 К – синего цвета. Лампы для аквариумов с цветовой температурой 5500-6500K подходят для аквариумов с пресной водой, если они не очень глубокие. Лампы для аквариумов 10000K дают интенсивный белый свет с голубоватым оттенком. Они идеально подходят для освещения рифов, глубоководных рыб и растений. Лампы для аквариумов 20000K имеют очень высокую интенсивность, в основном голубой свет, и применяются только для освещения глубоких аквариумов и глубоководных рыб.
2700–3000К – “теплый” свет / Warm light – излучение преобладает в красной части спектра.
4000–4200К – “холодный” свет / Cool light – излучение распределено по всему спектру.
5200–6500К – “дневной” свет / Day light – излучение преобладает в синей части спектра.
8000–25000K – ультрафиолет / Black light – ультрафиолетовое излучение.
Лампы с цветовой температурой 10000 K подходят для любого аквариума. Эти лампы обеспечивают яркий белый свет. Это лучший выбор подсветки для визуального наблюдения за жизнью аквариума.
- ССТ лампы – это температура абсолютно черного тела, которое имеет “ближайший” цвет к данной лампе. Она характеризует только лишь цвет. Но данное понятие ничего не говорит о том, насколько близки цвета лампы и абсолютно черного тела. Поэтому его можно использовать только для определения цвета лампы в общем, например лампы с CCT – 2880-3200K имеют желтоватый оттенок (“теплый”, “warm” цвет), лампы с CCT 3500K – “нейтральный” белый цвет, лампы с CCT 4100K – (“холодный”, “cool”) белый цвет, лампы с CCT – 6500-10000 – голубоватый оттенок.
- Коэффициент цветопередачи – отношение цветов предметов при освещении их данным источником света к цветам этих же предметов, освещаемых источником света, принятым за эталон (чаще всего Солнцем), в строго определенных условиях. Символ: Ra.
- Ra (CRI) – коэффициент цветопередачи. Он говорит о том, насколько близки к “истинным” будут видны цвета объектов, при рассматривании их при свете лампы. Под “истинными” понимаются цвета при рассматривании с использованием тестового источника. Ra принимает значения от 0 до 100. Ra, равный нулю, соответствует свету, который не передает цветов вообще, например, черно-белому телевидению. Ra, равный 100, соответствует источнику, который передает цвета также как и тестовый источник. Сравнивать значения Ra можно только для ламп с одинаковым значением CCT, иначе такое сравнение теряет смысл.
Ra 91 – 100 соответствует очень хорошей цветопередаче.
Ra 81 – 91 – хорошая цветопередача.
Ra 51 – 80 – средняя цветопередача.
Ra < 51 – слабая цветопередача.
- Квантовый выход (quantum yield) – характеристика фотосинтеза, которая показывает, насколько хорошо или плохо используется поглощенный свет различных длин волн.
- PAR – фотосинтетическая активная радиация, единицы измерения светового потока, принятые в биологии, которые измеряют свет в количестве фотонов. Фотосинтез это процесс соединения при помощи света оксида углерода CO2 и воды с образованием карбогидратов – основной “пищи” всех живых организмов. Его интенсивность напрямую зависит от интенсивности освещения – буквально каждый фотон подходящей длины волны, достигающий поверхности листа используется в реакциях фотосинтеза, причем независимо от угла падения.
- Видимое излучение – электромагнитное излучение с длиной волны от 380 до 780 нм. Человеческий глаз видит волны в диапазоне от 500 до 600 Hm. Чем выше амплитуда волны спектра, тем ярче для человеческого глаза кажется источник света. Нм – нанометр – одна миллиардная доля метра.
- Спектр актинического света. Актинический свет ламп для аквариума не оценивается по шкале Кельвина, он измеряется в нм (420 нм или 460 нм), так как относится к УФ-спектру излучения, который не является полностью видимым для нас. Они излучают сине-фиолетовый свет и подчеркивают цвет тропических рыб, анемонов и кораллов и необходимы для их роста. Подобные лампы являются отличным выбором для аквариумных рифов и глубоких аквариумов, используются в морских аквариумах, и как усиление синего спектра, в случае если его не хватает в пресноводных и морских аквариумах.
- Мощность – это параметр, отражающий фактическое количество света в аквариуме (измеряется в ваттах, W). Зная данный параметр легко подсчитать, сколько ватт на литр воды приходится в нашем аквариуме, например, в 200-литровом аквариуме при освещении его двумя лампами мощностью по 35W каждая, будет приходиться по 0,35 Вт/литр (35W x 2=70 Вт, 70/200=0,35 Вт/литр). Сравнивая мощности источников света, всегда сравнивайте одни и те же типы освещения (люминесцентные лампы с люминесцентными, галогенные лампы с галогенными и т.д.).
Правильный спектральный состав света ламп.
Освещение аквариума характеризуется тремя параметрами: во-первых, это яркость (сила света), во-вторых, длительность, в-третьих, спектральный состав. Каждый из этих показателей достаточно важен. Сделать свет в аквариуме естественным значит сделать его максимально приближенным к характеристикам света падающего на водную поверхность в природе. Такой свет дают:
- правильный спектральный состав света ламп;
- точность цветопередачи ламп (CRI);
- свет с параллельными лучами.
Оптимальный спектральный состав света обеспечивается комбинированием разных люминесцентных, криптоновых и ламп накаливания. Лампы накаливания дают наибольшее количество лучей красно-оранжевого спектра. Криптоновые лампы, имеющие грибовидную форму, дают больше лучей оранжевого спектра. Белый цвет флуоресцентной лампы получается при смешении трех основных цветов света: красного, зеленого и синего. Разные оттенки белого света, от красновато-белого до голубовато-белого, могут быть получены при смешении разного количества трех основных цветов света. Но, кроме всего этого, растения будут красивы, если получат достаточно света правильного спектрального состава.
Из всех цветов радуги им необходимы только красные и синие световые лучи, т.к. зеленые они просто отражают, другие цвета не воспринимают, а некоторые могут вообще им навредить. И чтобы правильно подобрать нужное освещение, важно купить аквариумные лампы с повышенной интенсивностью излучения – в красной и синей зонах спектра. Применять специальные лампы надо только в сочетании с лампами, спектральные характеристики которых наиболее подходят к дневному свету.
Короткие волны (зеленая и синяя часть спектра) не так сильно рассеиваются в воде (и воздухе), поэтому они сильнее проникают в воду. В то время как красные, оранжевые и желтые лучи гораздо сильней рассеиваются. Таким образом, в случае идеального спектра (интенсивность всех цветов одинаковая) больше зеленых и синих лучей достигнет дна, чем желтых и красных. Безусловно, ваши растения и рыбы получат этот свет, при этом будут выглядеть более яркими. Но, несмотря на это, вам будет казаться, что в вашем аквариуме меньше света, чем на самом деле. С другой стороны обилие красного, желтого и зеленого света создаст впечатление большей освещенности аквариума.
Цвет освещения, важен не столько для рыб, сколько для растений. В естественной жизненной среде рыб и растений происходит так, освещение в течение дня, и вместе с перемещением солнца, изменяет свои спектральные цвета. Например, если небо вдруг покрылось облаками, то свет будет окрашен синевой и температура цвета поднимается до 10000 К (градусы Кельвина), в то время как под чистым синим небом и при прямом попадании солнечного света, эта температура цвета от нейтральной точки, которая равна 5600 К, опускается до 4300 К. А так называемая норма света для производителей трубчатых ламп составляет 5000 К. Но дневной свет бывает разный. Если цветовая температура света поднимается до 10000К, то преобладает содержание синего (слегка голубоватого белого цвета). Если цветовая температура понижается (слегка желтоватый белый) за счет прямой инсоляции, то максимум интенсивности света переходит в область от жёлтого до красного. Видимый свет находится в диапазоне между 380 и 780 нм длины волны (нм или nm нанометр, одна миллиардная доля метра), от фиолетового до темно-красного.
Точность цветопередачи ламп. На точность цветопередачи ламп влияют цветовая температура света (K) и цветопередача CRI (или Ra). Цветовая температура, измеряемая в градусах Кельвина, значительно влияет на естественность освещения подводного ландшафта. Чтобы цветопередача в аквариуме была правильной, нужно чтобы лампа имела цветовую температуру не менее 5000 Kelvin, иначе все, что она освещает, будет иметь определенный оттенок, отличный от подлинного. Цветовая температура света (K) в Кельвинах не указывает на спектральный состав света лампы – она показывает, как воспринимает цвет света от данной лампы человеческий глаз. Это характеристика связанная именно с восприятием.
Чем ниже цветовая температура, тем больше доля красного, и меньше синего цвета. Чем выше цветовая температура, тем больше доля синего и зеленого. Качественные лампы любой цветовой температуры дают такой свет, при котором белый цвет всегда будет белым, но вот все остальные оттенки совсем не обязательно передаются правильно. В этом как раз и состоит отличие ламп с разной цветовой температурой. Если цветовая температура менее 5000К, то все оттенки, отличные от белого, будут восприниматься как более теплые (больше красных оттенков), или более холодные (больше голубых) – отсюда названия трех основных типов флуоресцентных ламп:
- 5000K и более – нормальная цветопередача, дневной свет;
- 4000K – много голубых оттенков, холодный свет;
- <3300K – много красных оттенков, слишком теплый свет.
В лампах c улучшенным CRI обозначение ставится в виде трех цифр, где первая обозначает коэффициент светопередачи (CRI): 7 – CRI=70+; 8 – CRI=80+; 9 – CRI=90+. Последние две соответствуют цветовой температуре (CCT). Например, /840 означает: CRI=80 и CCT=4000K. В принципе, чудес на свете не бывает, поэтому - наибольшую цветоотдачу имеет лампа с CCT около 5000K, поскольку при этом соответствующее абсолютно черное тело имеет наибольшее количество люмен/ватт. Чем выше или ниже CCT, тем светоотдача – ниже. Однако не надо забывать, что для фотосинтеза, в отличие от глаз, люмены не столь важны. Лампа с более высоким CRI имеет более низкую светоотдачу, поскольку спектр ее является более широким. Реальная светоотдача зависит от температуры, балласта и многих других факторов.
Так называемые лампы с “широким спектром” (full-spectrum, wide spectrum) имеют более или менее однородный спектр, в отличие от обычных ламп, имеющих ярко выраженный пик в спектре, т.е. в такой лампе цветопередача более естественна за счет присутствия большего числа цветов в спектре. Трифосфорная или трихроматическая лампа (triphosphors, trichromatic) – имеют пики в спектре, соответствующие трем основным цветам. За счет этого улучшается цветопередача. Такие лампы имеют специальное редкоземельное галофосфорное покрытие.
Чтобы обеспечить нормальную жизнедеятельность растений, нужен весь видимый световой спектр. Самую важную роль играют два относительно узких спектральных диапазона – сине-зелёный (около 440 нм) и красный (660 и 700 нм). Свет различных длин волн имеет для растений неодинаковое значение. Длинноволновый диапазон видимой части спектра благоприятно воздействует на деление клеток и рост растения в длину. Коротковолновые сине-фиолетовые лучи тормозят рост, но одновременно с этим вызывают увеличение массы и цветение.
Фиолетово-синий свет (470 нм) способствует размножению клеток растений, слишком большая доля синего света приводит к недостаточному росту растения в длину и оно становится маленьким и приземистым. Оранжево-красный свет (650-680 нм) определяет рост растения в длину и его размер, причем процесс поглощения в оранжево-красной области идет в 2 раза интенсивнее. Слишком большая доля красного света с удлинением стебля делает его длинным и тонким, и увеличиваются междоузлия. Оба цвета должны находиться в соответствующих пропорциях.
Обратите внимание на ультрафиолетовую (УФ) составляющую света. Следует различать три типа УФ:
- Не вредный мягкий УФ (А). Участвует в процессе фотосинтеза, особенно у сине-зеленых водорослей;
- Вредный средний УФ (В). При сильной дозе и длинной экспозиции не полезен ни для рыб, ни для растений. Полезен в террариумах, так как помогает рептилиям синтезировать витамин D. При больших дозах задерживает рост растений и мальков;
- Очень вредный жесткий УФ (C), фильтруется озоновым слоем Земли. Используется в стерилизаторах. Не следует использовать для освещения!!!
Цветовая характеристика ламп.
Цветовое ощущение – общее, субъективное ощущение, которое человек испытывает, когда смотрит на источник света. Свет может восприниматься как теплый белый, нейтральный белый или холодный белый. Объективное впечатление от цвета источника света определяется цветовой температурой. Цветность света – температура черного тела, при которой оно испускает излучение с той же самой хроматичностью, что и рассматриваемое излучение. Иначе говоря, это мера объективного впечатления от цвета данного источника света. Если температура “черного тела” повышается, то синяя составляющая в спектре возрастает, а красная составляющая убывает. Основные показатели цветовой температуры для люминесцентных ламп таковы (единица: кельвин К):
- Белый сверхтеплый – 2700 К.
- Белый теплый – 3000 К.
- Белый естественный (или просто белый) – 4000 К.
- Белый холодный (дневной) – больше 5000 К.
Что касается цветовой температуры, лампы с низкой температурой (<5000K) придают красноватый оттенок, а лампы с высокой температурой цвета (>5000K) хорошо выявляют зеленый цвет. Например, при цветовой температуре менее 5000K свет плохой, потому что имеет желтый оттенок, а свет при 10000K белёсый и цвета становятся голубоватыми. При свете менее 5000K водные растения имеют желтый оттенок и выглядят нездоровыми. При свете 10000K водные растения становятся слишком зелеными и выглядят искусственными.
Таким образом, при подборе ламп по цветовой температуре “K” чтобы растения под водой выглядели естественно, нужно выбирать лампы с цветовой температурой 7000-8000K. Лампы с низкой цветовой температурой K<5400 способствуют росту водорослей. Что касается люминесцентных ламп, то “теплые” (3300К) и “холодные” (4000К) не воспроизводят температуру дневного солнечного света, и дают слишком много зеленого света, но мало красного и синего для роста растений. Есть намного более совершенные лампы T5 «дневного света» (5400-8000К), температура света которых близка к солнечной.
Еще одна значимая характеристика, на которую надо обращать внимание (особенно при профессиональном освещении) – это цветопередача люминесцентной лампы. Достоверность цветопередачи определенной лампы показывает нам, насколько естественным выглядит наше окружение в свете этой лампы. Способность к цветопередаче отражает коэффициент (индекс) цветопередачи CRI (Color Rendering Index, Ra), или Индекс цветопередачи (ИЦ). CRI часто обозначается в каталогах как Ra. По максимуму составляет 100 – это значение многих ламп накаливания и солнечного света.
Люминесцентные лампы, имеющие одинаковое значение цветовой температуры, могут обладать различной цветопередачей, что необходимо учитывать. Причина отличия может заключаться в разном спектральном составе света, который они производят. CRI измеряет, насколько точно источник света передает истинный цвет объектов. Идеальный источник света имел бы CRI=100. Меньшие значения означают, что цвета смещены от их истинного оттенка и насыщенности: например, при желтом будут хуже видны желтые полосы, при синем – синие. Каждый производитель светотехнической продукции маркирует свои изделия по своему особому типу, но эти обозначения можно расшифровать и получить необходимую информацию о лампе. Для сравнения обычно выбирают 8 основных цветов (Ra-8) и вычисляют среднее.
Спектральные распределения интенсивности.
Полученное значение обозначается символом Ra и принимают за ИЦ – чем ниже эта величина, тем хуже цветопередача.
- От 91 до 100 - очень хорошая цветопередача;
- 81-91 – хорошая;
- 51-80 – средняя цветопередача;
- менее 51- слабая цветопередача.
Лампы с высоким CRI>90 предназначены для установки там, где важно очень точное восприятие цветов – в типографиях, графических студиях, музеях. Если у вас лампы с параметром RA от 80 до 90, то они обладают хорошей спектральной составляющей света, а со значением RA более 90 лампы обладают очень хорошим, можно сказать идеальным, спектром частот. Старайтесь использовать лампы с высоким значением CRI, чтобы ваши растения выглядели привлекательней.
Эти два параметра обычно указываются на маркировке люминесцентных ламп. Например, /735 – означает лампу со значением CRI=70-75, CCT=3500K – лампа тепло-белого цвета, /960 – лампа с CRI=90, CCT=6000K – лампа дневного света. Нужно выбирать трифосфорные флуоресцентные лампы с максимальным CRI чтобы искажения цветов подводного мира были минимальными (с цветовой температурой 5400 – 10000K). Все флуоресцентные лампы нового типа T5 трифосфорные, и имеют CRI не менее 80.
Световая отдача зависит от длины лампы. Как видно из графика, имеет смысл применять, например, одну лампу 40 Вт вместо двух ламп по 20 Вт. Цвет лампы в обозначении обычно стоит после знака /. Например, F18/43. Цвета обозначаются либо буквенной комбинацией (/CW и т.д.) или цифрами. Цвет задается значением цветовой температуры (CCT). Для стандартных ламп с невысоким коэффициентом светопередачи (CRI) цвет обозначается в виде двух цифр:
Обозначение CCT Цвет
/25 4000K Близок к холодному белому (CW – cool white)
/29 2900K Близок к тепло-белому цвету – soft white, warm white
/33 4100 Холодный белый (CW)
/35 3500K Белый (W – white)
/54 6200K Близок к дневному свету (D – day)
/76 Osram Natural De Lux
/77 Аквариумная лампа
/15, /60 Красный цвет
/16, /62 Желтый цвет
/17, /66 Зеленый цвет
/18, /67 Синий цвет
/79 3800K Имеет повышенное содержание красного цвета в спектре
/89 10000K Актиничный (голубой цвет). Используется в риф-аквариумах
/05 Актиничный (голубой цвет). Используется в риф-аквариумах
/03 Супер-актиничный (super-actinic). Используется в риф-аквариумах
/01, /12 Медицинские лампы. Излучают ультрафиолетовое излучение
/52 Медицинская ультрафиолетовая лампа
/10 Излучает УФ излучение (UV-A, UV-B)
Лампы, которые маркируются трехзначным кодом, содержат информацию относительно качества света (индекс цветопередачи и цветовой температуры). Первая цифра – индекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом, чем выше индекс, тем достоверней цветопередача). Вторая и третья цифры – указывают на цветовую температуру лампы. Таким образом, маркировка “827” указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 К.
Код — Особенности и визульное восприятие света ламп.
530 — Свет тёплых тонов с плохой цветопередачей.
640/740 — “Прохладный” свет с посредственной цветопередачей и светоотдачей.
765 — Голубоватый “дневной” свет с посредственной цветопередачей и светоотдачей.
827 — Похожий на свет лампы накаливания с хорошей цветопередачей и светоотдачей.
830 — Похожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачей.
840 — Белый свет для рабочих поверхностей с очень хорошей цветопередачей и светоотдачей.
865 — “Дневной” свет с хорошей цветопередачей и посредственной светоотдачей.
880 — “Дневной” свет с хорошей цветопередачей.
930 — “Тёплый” свет с отличной цветопередачей и плохой светоотдачей.
940 — “Холодный” свет с отличной цветопередачей и посредственной светоотдачей.
954, 965 — “Дневной” свет с непрерывным спектром цветопередачи и посредственной светоотдачей.
Люмены и люксы часто являются источником путаницы. Эти величины являются единицами измерения светового потока и освещенности, которые нужно различать. Люмен – это единица светового потока, то есть испускаемого света. Люкс – это единица освещенности, то есть принимаемого света. Световой поток характеризует источник света, а освещенность – поверхность, на которую падает свет. Освещенность измеряется в люксах (Лк). Источник света со световым потоком в 1 Лм, равномерно освещающий поверхность площадью 1 кв. м создает на ней освещенность 1 Лк. Электрическая мощность лампы измеряется в ваттах (Вт), а световой поток (“световая мощность”) – в люменах (Лм). Чем больше люменов, тем больше света дает лампа. Приборы для измерения освещенности называют люксметрами. Цвет освещения измеряется в градусах Кельвина.
Производители ламп указывают световой поток в люменах (т.е. это весь световой поток от данной лампы), но насколько это применимо для аквариумов? Эта величина показывает, насколько яркой кажется лампа для человеческого глаза. Поскольку человеческий глаз неодинаково чувствителен к разным областям спектра, то это абсолютно не говорит о “реальной” яркости лампы. Максимальной чувствительность глаз человека обладает при длине волны 555 нм (зеленый цвет). Поэтому лампы, основной спектр излучения которых сдвинут в красную или синюю сторону будут нам казаться менее яркими. Отсюда вывод – если на одной лампе написано, что она дает больше люменов чем другая, то это еще не значит, что она ярче светит, она просто кажется более яркой.
Световой поток, излучаемый лампой, очень сильно зависит от температуры окружающего воздуха. Значения потока в люменах, которые указываются в каталогах, измерены при температуре воздуха 25°С. Применение различных рефлекторов может резко увеличить температуру окружающего колбу воздуха и уменьшить световой поток на 10-15%. Поэтому используемые светильники должны иметь отверстия для вентиляции, чтобы снизить температуру лампы.
Рекомендации по продолжительности и выбору источников света.
На основании многолетнего опыта можно рекомендовать следующие мощности устанавливаемых осветительных приборов (для светильников люминесцентного освещения с отражателем).
- 0,1-0,3 Вт/л — для аквариума без растений;
- 0,2-0,4 Вт/л — для тенелюбивых рыб, в этом случае выбор растений ограничен (криптокорины аффинис, бласса, кордата, гриффита; папоротники болбитис и микрозориум, яванский мох; отдельные кусты эхинодорусов и сагиттарий);
- 0,3-0,5 Вт/л — для аквариума с небольшим количеством растений (аквариум тропического леса), при такой освещенности будет расти большинство аквариумных растений, но их рост замедлен, некоторые кусты вытягиваются к свету;
- 0,5-0,8 Вт/л — наиболее приемлемая освещенность для декоративного аквариума; в таких условиях прекрасно развиваются и принимают яркую окраску большинство растений; эта освещенность рекомендуется для создания декоративных интерьеров;
- свыше 0,8 Вт/л — освещенность для аквариума с высокой плотностью посадки растений (так называемый “голландский” аквариум).
Советы аквариумистов по комбинации ламп освещения в аквариуме.
- Какую лампу куда ставить?
Рыбы смотрятся ярче в отраженном свете. Поэтому более яркую для глаза лампу лучше ставить спереди. Если в лампе больше синего цвета в спектре (она выглядит синеватой или розоватой), то при освещении такой лампой чешуя многих рыб будет казаться более ярко окрашенной за счет переизлучения света чешуйками. Такую лампу лучше поставить вперед.
Важным параметром лампы является цветопередача (CRI). Лампу с более высоким коэффициентом цветопередачи тоже лучше поставить вперед. Те, кого пугает их относительная дороговизна могут, заняться комбинаторикой, покупая люминесцентные лампы с максимумом излучения в красной области (дающие розоватый свет, например, OSRAM 77) и в голубой (лампы, излучающие холодный или нейтральный белый свет). Очень сложно в достаточной мере осветить дно аквариума высотой 50 см и более.
- Смешивание спектра ламп с разной цветовой температурой.
Смешивать следует в определенной пропорции. Например, если у вас есть лампы T5/T8 965 Ra98 6500K и Aqua Medic Ocean White 10000K, то для получения 8000K нужно как бы повысить цветовую температуру с 6500K на 23%: 8000 – 6500 = 1500К; 6500/100 = 65; 1500K/65=23%. То есть нужно чтобы доля ламп с 10000K была 23% – линейных ламп T5 нужно ставить шесть штук, значит две должны быть с 10000K (33%), и четыре с 6500K. Получаемая цветовая температура будет ~8700K. Такая же пропорция будет и для ламп T5 860 6000K Ra85. Ставить 10000K нужно, конечно же, чередуя через одну с T5/T8 965. Смешивание спектра T8 Osram 765 с Feron 6400K в пропорции 2:1 или 1:1 тоже дает весьма красивый свет.
Лампы полного спектра (full spectrum). В отдельную категорию можно отнести лампы “полного спектра”. Это флуоресцентные лампы T5 или T8 со значительно более равномерным распределением интенсивности излучения по всем длинам волн, значительно ближе к таковому у солнечного света. Результат – великолепная цветопередача и комфортность для глаз.
На воздухе наивысшее качество цветопередачи имеют лампы, максимально приближающиеся к идеальному стандартному источнику света для цветокалибровки D50 и D65. Это лампы с цветовой температурой 6500K (T5 серии 965 и 950), они лучше по цветопередаче, потому что более точно передают голубые оттенки, чем обычные лампы серии 865 с той же 5000-6000K. Чем выше цветовая температура, тем больше доля голубого спектра. Это влияет на PAR и красоту ваших растений. Для аквариума с растениями нужно использовать специальные аквариумные лампы имитирующие “тропический свет” 7500-10000K. Если таких нет, пригодны флуоресцентные лампы T5 серий 965 6500K (T8 10-765, 54, 154), намного хуже – 860 (T8 186) 6000K Ra85. Для повышения цветовой температуры до 8000К можно смешать свет с лампами 10000К в правильной пропорции.
В большинстве случаев наилучший результат дает комбинированное использование различных ламп. Вот некоторые часто используемые и эффективные пары и тройки:
AquaGLO + SunGLO. Достоинства: хорошая окраска рыб, очень неплохое освещение для растений, приятная глазу цветовая гамма всего аквариума. Умеренная яркость не позволяет начинающим совершать грубых ошибок в освещении аквариума, по этой причине многие фирменные аквариумы комплектуются этой парой. Недостатки: при серьезном занятии водными растениями, суммарная мощность требуется как минимум в полтора раза больше, чем при использовании ламп с увеличенной светоотдачей.
FloraGLO + PowerGLO. Достоинства: те же, что и для пары AquaGLO + SunGLO, плюс большая освещенность аквариума. Один из лучших вариантов для аквариума с живыми растениями. Недостатки: при ошибках аквариумиста, например, плохо подобранном световом дне, возможны вспышки водорослей. Окраска некоторых рыб менее эффектна, чем при использовании AquaGLO.
Две AquaGLO + LifeGLO. Достоинства: очень хорошее освещение для растений, великолепная подсветка рыб. Недостатки: практически отсутствуют, но далеко не все аквариумы позволяют установку трех ламп.
Для выращивания растений можно порекомендовать все выпускаемые различными фирмами лампы, а также специальные лампы для растений, отличающиеся высоким процентом красного цвета в спектре. Рекомендуются лампы фирмы Osram цветов освещения Lumilux 22, 31 и 41, а также соответствующие компактные лампы Dulux 31 и 41, лампы фирмы Philips маркировки TLD 82, 83 и 92, а также фирмы Sylvania цветов освещения 182, 183 и 193. При необходимости они могут быть комбинированы с нейтрально-белыми люминесцентными лампами (например, Osram Lumilux 21, Philips TLD) 84, 94 или Sylvania 184.
Проверенной комбинацией являются, например, Osram 22 или 32 с Philips 94, а также GoLux с Philips 84 или 94. Хотя специально разработанные лампы для растений Osram 77 Fluora и Sylvania GroLux, также как Triton и Aquarelle обладают низким КПД по сравнению со многими другими лампами и в наши дни используются гораздо реже, все же неоспоримо их позитивное воздействие на растения вследствие высокого процентного соотношения красного и синего цветов в спектре.
В цвете и интенсивности освещения каждый аквариумист должен как можно точнее придерживаться средних показателей дневного света. В лампах дневного света очень высокое содержание синих цветов. Однако для нормального развития растений, последним нужен красный спектр, поэтому необходимо комбинировать различные лампы с так называемыми лампами для растений. Например, к таким лампам относятся Osram-Fluora и Sylvania Gro-Lux. Обе дают подчёркнутое излучение в синей и красной области спектра, и тем самым особенно удачно согласуются со спектрами света, воздействующего на фотобиологические процессы. Специальные лампы для растений Sylvania-Gro-lux и Osram-fluora дают достаточно голубого и очень много красного цвета, но, к сожалению, только немного желтого. Эти лампы обладают слабой степенью воздействия и очень ненатуральной цветопередачей, поэтому их нигде не употребляют одни, а комбинируют с другими лампами, как, например Osram-15 (дневной свет) или Osram-22 (белый свет).
Очень хорошей лампой является Osram-32 (теплый тон), которая, без сомнения, дает прекрасный результат. Уже несколько лет в аквариумистике используется лампа True-lite, которая излучает свет, схожий с солнечным. Но, все-таки она дает мало красного света, и ее необходимо комбинировать с лампой Osram-fluora или Sylvania-Gro-lux. Чтобы иметь более естественную цветопередачу окраски рыб поставьте лампу с широким спектром (full-spectrum) или трифосфатную (trichromatic, triphosphate). Очень хорошая лампа GE Chroma-50.
Комбинации ламп Hagen Sun Glo и Aqua Glo и Sylvania Gro Lux, Aqua Star и Daylight Star. Именно лампа Gro Lux имеет четко выверенный состав с максимальными пиками в сине-фиолетовой и оранжево-красной частях спектра. Комбинация Sun Glo с другими и лампами, похожими по спектральным данным с Gro Lux также давали интересные результаты.
В правильно организованном аквариуме с растениями стоит использовать лампы двух типов: дающие максимальный световой поток, для достижения нормы в 30-50 lm/л и фитолампы со спектром максимального поглощения пигментных систем растений. В качестве первых - Hagen Life GLO, Sun Glo и Sylvania Aqua Star, Daylight Star. Вторые лампы: Hagen Aqua Glo и Sylvania Gro Lux. Фитолампа Flora Glo может стимулировать развитие водорослей.
Смешанное освещение с лампами Osram FLUORA+ Contex 827, Philips 830 или OSRAM 31-830. Карел Ратай особенно выделяет лампу OSRAM Lumelux 31-830. В своей статье пишет, что она является универсальной для аквариума – не только пригодна для роста растений, но и обеспечивает превосходную подачу окраски рыб и растений, т.к.: имеет максимум света в красной области; недостаток света в синей области ограничивает рост водорослей; достаточное количество зеленого света обеспечивает превосходную цветопередачу, растения смотрятся свежими и зелеными.
На заднем плане часто ставят фитолампу Hagen Aqua Glo. Фитолампы других фирм имеют более розовый свет. На передний план часто ставят лампу Hagen SunGLO. Лампа этого типа сильно “желтит”, как и лампа фирмы Osram 940. Более подходящая лампа Osram 950. Не “желтит” лампа дневного света Osram 860.
Наилучшую цветопередачу в аквариуме можно получить, используя специальные аквариумные флуоресцентные лампы нового типа T5 имитирующие “тропический свет” как ADA NA Lamp 8000K: T8 Arcadia Freshwater Lamp 7500K, JBL Solar Ultra Natur 9000K CRI 1A class, Hagen Life-Glo 6700K, JUWEL High-Lite Day 9000K, Aqua Medic Ocean White 10000K + Planta. Отличный свет дает Feron T4 White 6400K + T5 950. Если нет специальных, можно использовать обычные T8 серии 965 лампы с 6500К и Ra98 – они соответствуют высшему стандарту D65 по цветопередаче и пригодны для цветокалибровки. Они хорошо комбинируются с T5 Aqua Medic Ocean White 10000K в пропорции 1:2.
Лампы Arcadia и JBL передают цвета практически идентично. Лампы T5 860 и T8 765 дают слишком унылый свет с бледными зелеными цветами, лампы с цветовой температурой 3500-5000К слишком желтый свет, а лампа T5 Sylvania Aquastar 10000K вообще не пригодна для пресноводного аквариума. T5 Aqua Medic Ocean White 10000K и T4 Feron White 6400K дают весьма неплохой свет при смешивании с 965/860. Если у вас вообще нет специальных аквариумных ламп 7500-8500К, T4 Feron White 6400K или ламп “полного спектра”, можно использовать T5/T8 серии 965 6500K Ra98. Не ставьте серию T5 950 5000K – в аквариуме они дают явный желтоватый оттенок.
Лампы Arcadia Freshwater Lamp 7500K не только имеют пики в синей и красной частях спектра для фотосинтеза растений, но и улучшают передачу всех зеленых оттенков растений. Пики спектра в голубом 430нм, желто-зеленом 550нм, и оранжевом спектре. Её преимущества: высокая интенсивность излучения, выявляет красоту зеленых и коричневых оттенков аквариумных растений, делает окраску рыб ярче, способствует росту растений.
T5 HO Life-Glo II 6700K выпущена в 2007 году. Это новая версия лампы T8. Свет великолепный. Зеленый даже немного фосфорный, красные и коричневые оттенки воспроизводятся отлично. Можно немного приглушить зеленый, поставив 1/4 ламп 965, 950, 860. Aqua Medic T5 HO Ocean White 10000K. Эта лампа дает немного фосфорные зеленые цвета и небольшой сдвиг цветопередачи красных и коричневых оттенков. Растения и животные проявляют свою естественную окраску и рост. Комбинируйте с Ocean Blue Actinic для морского аквариума, а в аквариуме с растениями – с лампой для роста растений Aqua Medic Planta. Для компенсации слишком высокой цветовой температуры и улучшения цветопередачи используйте в сочетании с T5 серии 965 6500 CRI=98.
Лампа Aqua Medic Planta T5 HO тоже имитирует тропический свет, но у нее усилены синяя и красная части спектра для улучшения фотосинтеза растений (PAR). Сочные зеленые цвета растений, даже немного фосфорный. Красные и коричневые оттенки тоже очень хороши. Вода как будто исчезла, но цвета растений немного холодноваты. Чтобы сделать свет чуть теплее, комбинируйте 1:1 с T8/T5 965 6500K, Sylvania T5 HO Aquastar 10000K. Имитирует спектр тропического дневного света. Способствует росту водных растений за счет пиков в синей и красной частях спектра. Всё желто-фиолетовое. Зеленые цвета совершенно пропадают, становясь желто-белёсыми, коричневые и красные оттенки не очень плохие. То же можно сказать и о “фитолампе” Sylvania Gro-Lux 8500K – цветовая температура ничего не говорит о качестве цветопередачи. Это лампа с таким же искаженным спектром, как и Aquastar. Даже их совместное использование не дает эстетически приемлемого света.
Из ламп T8 можно использовать лампы T8 Hagen EXO-TERRA – линейные T8 Reptil GLO 2.0 Daylight Terrarium Lamp имеют цветовую температуру 6700K и совершенно идентичный спектр, что и T5 HO Life-Glo II 6700K, а их CRI= 98, только добавлено немного UVB. Недостаток – лампы T8 теряют половину силы излучения за год, а UVB может стимулировать водоросли (нужен тест).
Обычные лампы T5 HO пригодны для аквариума с растениями. Общий принцип при выборе ламп – цветовая температура 6500-9000K и максимальный CRI. Лампы должны быть широкого спектра – трихроматические (trichromatic), с тремя пиками: в синей, зеленой, и красной части спектра. Это дает качественную цветопередачу любых оттенков. Трихроматическими являются все аквариумные лампы T5 HO "тропического" света и обычные лампы серий T8/T5 965 с CRI=98. Лампы с цветовой температурой 3500-5000K дают очень желтый свет и совершенно непригодны. То есть для аквариума с растениями подходят флуоресцентные лампы T5 только серий 965 6500K Ra98, 860, 865 6500K Ra85. Лучшие из них – T5 HO 965 6500K. 965-е передают тонкие нюансы цветов и применяются в зубопротезных кабинетах для подбора цвета коронок, фотолабораториях, музеях. Имея цветовую температуру 6500К, они очень близки к стандартному источнику света D65 и имеют CRI>95, то есть соответствуют высшим требованиям соответствия цветов. Несмотря на это цветопередача под водой хуже, чем у специальных аквариумных с более высокой цветовой температурой 6500-9000К.
По результатам измерений лампы 965 имеют PAR даже больше, чем большинство специальных аквариумных PAR-ламп. Из ламп Philips T5 наиболее подходящие TL5 965 Ra98, TL5 865 Ra85. Из ламп T8 – Philips TL-D90 De Luxe Pro 6500K, Philips TLD 865 Ra85, TLD 965 Ra98. Лампы 950 5000K в аквариуме дают слишком желтый свет.
Самые лучше обычные лампы T5 HO для аквариума с растениями: T5 HO Philips TL5 HO De Luxe Pro 6500K (без смешивания), Osram Lumilux SKYWHITE 880 8000K (холодноваты, смешать с 840), Лампы T5 HO Osram Lumilux Skywhite 880 8000K имеют пик в области голубого света 460-465 nm, что увеличивает цветовую температуру и делает их более пригодными для аквариума с растениями, Osram 965 Lumilux De Luxe Pro (желтоваты). Если цветопередача зеленых оттенков ламп 965 хорошая, но имеется немного голубоватый оттенок или зеленый немного перенасыщенный, можно сочетать их с лампами более низкой цветовой температуры 6500К, и тем самым компенсировать сдвиг оттенков. Для этой цели используются обычные лампы, но с максимально высоким качеством цветопередачи: серии 965 6500K Ra98. Например, сочетание T5 Aqua Medic Ocean White 10000K с Philips T8 965 6500K, Ra 98 в пропорции 1:2 смотрится прекрасно.
Если вас интересуют лампы T8 с высоким PAR исключительно для эффективного выращивания растений в больших масштабах, лампа с самым высоким PAR – Philips Advantage. Из линейных ламп Osram T5 для аквариумов с большими оговорками подходят только лампы серии HO-FQ. Это лампы марки LUMILUX DE LUXE 965 Daylight (6500K) и LUMILUX 860 Daylight (6000K). Они имеют хороший CRI=85-95, и большую светоотдачу и мощность, чем лампы серии HE-FH (то есть экономичные). Но свет от них очень холодный и плохо передает цвета водных растений. Лучше их смешивать с 950 или 850.
Feron T4 White 6400К. Лучшая альтернатива лампам ADA MH-HQI, ADA NA Lamp 8000K, Arcadia Freshwater 7500K, JBL Solar Ultra Natur 9000K, Hagen Life-GLO и Aqua Medic Ocean White 10000K – лампы Feron T4 (Россия). Это не Т5, но у них цоколь Т5, а цветовая температура 6400K. Они дают великолепный свет, который радикально лучше, чем у Т8 765 6500K, T5 865 6500K или T5 860 6000K. Самое главное в них – температура цвета и спектр, которые почти идеально подходят для Nature Aquarium. Необыкновенно сочные зелёные цвета и очень красивые голубые оттенки рыб. Коричневые оттенки листьев проявляются намного лучше и естественнее, а зеленые растения даже немного фосфорные, но это можно исправить. По сравнению с T5 HO – T4 Feron White 6400K самый дешевый вариант освещения для Nature Aquarium высокого качества. Без значительного уменьшения светового потока и сдвига цветопередачи лампы Feron горят не менее двух лет. К балластам никаких претензий нет. Смешивайте их свет с более теплыми лампами.
Есть и другие лампы – например, T8 Philips TL-D 54/765 6500K, но на порядок хуже. Philips T8 765 придают желтоватый нездоровый оттенок всем растениям. Свет от Aqua Medic T5 HO Ocean White 10000K немного хуже – растения бледноваты и перебор голубого оттенка в окраске рыб. Подкорректировать это можно смешав их свет с T8 965 6500K CRI=98.
Флуоресцентные лампы T5 6500-9000K экономичны, не перегревают аквариум, компактны, широкодоступны, имеют нужную цветовую температуру и великолепную цветопередачу. Срок службы ламп T5 – до 5 лет при падении интенсивности излучения к концу срока службы всего 15%.
Если вы хотите создать в своем аквариуме “псевдоморе” с белыми кораллами, используйте голубые лампы, такие как Hagen Marine-Glo. Если для вас важен правильный рост растений и их красота – используйте лампы Osram Fluora или Hagen Aqua-Glo. Если вы хотите поразить гостей необычайной причудливой яркостью рыб – установите лампы Hagen Power-Glo, дающие очень широкий диапазон цветов. В свете ламп Hagen Flora-Glo растения смотрятся гораздо ярче и зеленее, но не очень хорошо растут. Еще есть необычайно яркая лампа Hagen Life-Glo, которая при той же мощности, что и у других ламп, дает уникально сильную освещенность. Правда, растения эту лампу не любят – для них света от нее оказывается мало, ведь человеческие глаза и растения совершенно по-разному воспринимают свет.
Ультрафиолетовые (бактерицидные) лампы используются для дезинфекции воды. Эффективность применения ультрафиолетового излучения зависит от его интенсивности и толщины слоя воды. Большинство микроорганизмов среднего размера могут быть убиты при облучении ультрафиолетовой лампой интенсивностью 35000 мкВт/с на 1 кв. см поверхности. Ультрафиолетовую лампу, излучающую световой поток длиной волны 254 нм, помещают в пробирку, изготовленную из кварцевого стекла. Вода с помощью механического насоса подается в стерилизационную камеру, а из нее – в аквариум. Расстояние между лампой и стенками пробирки составляет 5-10 мм, а между стенками пробирки и камеры – не более 10 мм. Камеру изготавливают из непрозрачного нетоксичного материала.
Спектры света.
То, что человек называет спектром, в действительности является нашим впечатлением от облучения сетчатки глаза волнами длиной от 380 нм до 780 нм (1 нм = 0,000 001 мм). Человеческий организм не способен воспринимать электромагнитное излучение другой частоты, однако в указанном диапазоне волны разной длины нам кажутся различно окрашенными. Так, самые короткие волны из видимого человеческим глазом спектра мы называем фиолетовыми, на другом краю спектра находятся самые длинные волны, дающие ощущение красного цвета. Между ними лежат все остальные цвета и их оттенки, знакомые нам по радуге: синий, зеленый, желтый и оранжевый.
Раскаленные газы излучают электромагнитное излучение в узком диапазоне спектра, поэтому их свечение кажется цветным. К примеру, если газ неон заставить светиться, пропуская через него электрический разряд, а полученный свет разложить при помощи призмы, то вы увидите только лишь узкую голубую полоску, а в остальной части видимого спектра этот газ не излучает. Такой спектр называют линейным. Раскаленные твердые тела излучают во всем диапазоне видимого света, их спектр называется непрерывным. Он характерен и для солнечных лучей, порождающихся смесью различных светящихся газов, каждый из которых излучает в узком диапазоне, вместе же они перекрывают весь видимый спектр. Смесь излучения всех видимых цветов радуги мы воспринимаем как белый свет. В действительности это лишь иллюзия человеческого мозга, что очень легко доказать при помощи призмы, разлагающей белый луч на его радужные составляющие.
Интенсивность свечения в различных частях солнечного спектра неодинакова: например, в нем преобладают желтые, красные и зеленые составляющие, а синяя часть спектра ослаблена. Из-за этого солнечный свет воспринимается нами как слегка желтоватый. Проходя сквозь атмосферу Земли, лучи ослабевают, причем неодинаково в разных частях спектра. Например, в пасмурный день освещение не кажется желтоватым - оно даже слегка голубоватое, потому что водяной пар в облаках интенсивно поглощает красные лучи и сравнительно хорошо пропускает голубые. Такое изменение естественного освещения объясняет происхождение широко употребляемых терминов, связанных со спектральными характеристиками ламп: теплое, нейтральное и холодное свечение. Не имея возможности подробно исследовать спектр лампы, люди на глаз определяют избыток красных лучей (теплый свет), сбалансированный спектр (нейтральный свет) или избыток голубых (холодный свет).
Оттенок света может до неузнаваемости изменить разглядываемую картинку. Мы привыкли к тому, что все освещенное солнечными лучами кажется нам естественным. Но стоит зайти солнцу за тучу, и окружающие лица нам кажутся уже не такими веселыми: красных лучей в спектре стало меньше, а синие, которые лучше пробиваются сквозь облака, не настраивают нас на жизнерадостный лад. Во время заката и рассвета, напротив, голубые лучи солнца теряются в нижних, пыльных слоях атмосферы, а красные проходят беспрепятственно, придавая окружающим пейзажам драматизм и пафос.
Удивительно также и то, что мозг все время подправляет в нашем сознании цветовую палитру, и мы не замечаем, что краски стали более голубыми или более красными, нам кажется, что предметы под разными светильниками остались прежними, но общее впечатление все же изменяется. Мы хорошо знаем, что в помещениях с искусственным светом люди порой выглядят вполне естественно, а порой, если лампы подобраны неправильно, лица становятся просто мертвецкими. Более необычные эффекты можно заметить в условиях, на которые человеческий глаз и мозг не рассчитывали. Например, проникнув сквозь толщу морской воды, солнечный свет на большой глубине теряет свои длинные лучи, и красная кровь кажется зеленой.
В аквариуме заметно изменить наше восприятие растений и рыб могут лампы холодного и теплого свечения. Последние придают приятный теплый оттенок всей композиции в водоеме, растения будто бы купаются в солнечных лучах. Но такие лампы не подчеркивают яркие краски рыб, зеленый и голубой блеск чешуи при таком освещении теряется. Холодное освещение, напротив, хорошо подчеркивает цвета рыб и их блеск, но растения смотрятся несколько необычно.
Чтобы вы могли оценить особенности свечения той или иной лампы, лучше всего найти ее спектральный анализ. Компании-производители аквариумного оборудования предлагают специальные лампы, зная особый интерес аквариумистов. К теме спектра, и приводят диаграмму на упаковке лампы. Спектр ламп общего назначения указывают не так тщательно, вы можете найти его лишь в каталогах фирмы-производителя, да и то не всегда. Вместо этого на упаковке могут быть приведены другие характеристики: цветовая температура и индекс цветопередачи.
Цветовая температура ничего не говорит о деталях спектра, но характеризует степень "теплоты" или "холодности" свечения и измеряется в градусах Кельвина. Чем больше величина, тем больше свечение сдвигается в голубую, холодную сторону. Низкие значения, напротив, соответствуют красноватому, теплому свечению. Например, цветовая температура лампы накаливания 2700°К, ее свет кажется желтовато-оранжевым. Обычному дневному свету соответствует 5500°К, лампы с цветовой температурой 6500°К кажутся нейтрально-белыми. Лампам холодного свечения, которые могут применяться в аквариумистике, соответствует 18000°К, их свет голубоватый. Запомните, что цветовая температура является искусственной характеристикой, не имеющей ничего общего с температурой внутри лампы. Это лишь способ приблизительно оценить в спектре преобладание красных или голубых составляющих.
В последнее время на лампах можно встретить и такую характеристику, как CRI (Color Rendering Index), то есть индекс цветопередачи. Если человеческий глаз привык считать солнечный спектр естественным, то с помощью CRI оценивают, как точно лампа имитирует солнечный спектр. Для этого индекс цветопередачи дневного света принимают за 100. Чем ближе CRI лампы к этой величине, тем естественней выглядят освещенные ею предметы. У современной лампы накаливания это значение равно 90. При выборе ламп для домашнего водоема вы можете не обращать особого внимания на эту величину, поскольку лампы приходится отбирать по другим, более важным критериям. Индекс цветопередачи всех применяемых в аквариумистике ламп будет достаточно высоким.
Подбор ламп относительно живых растений - логика рассуждений здесь проста и очевидна. Основным процессом для зеленых растений является фотосинтез, происходящий только на свету и только в присутствии хлорофилла - вещества, которое возбуждается световыми волнами определенной частоты. Все ранее сказанное касалось спектров излучения, то есть спектров светящихся тел. Остальные тела обладают спектрами поглощения. Например, сажа кажется нам черной потому, что она поглощает свет во всех частях видимого спектра, снег, напротив, белый, потому что он не поглощает ни одну из частей спектра, а отражает их. Меченосец для нас красный, потому что его кожа отражает красные лучи, а остальные части спектра она поглощает. Растения кажутся нам зелеными как раз по той причине, что спектр поглощения хлорофилла имеет провал в этой цветовой части, он не нуждается в зеленом свете.
Если растения осветить так, что спектр света будет совпадать со спектром поглощения хлорофилла, то оба они окажутся в идеальных условиях. Специально для теплиц выпускают лампы, которые если не на все 100 % подходят для этого, то, по крайней мере, эффективнее других. Для ламп такого рода даже есть специальное обозначение - фитолампа, то есть лампа для растений (от греческого слова "фитос" - "растение"). Чтобы оценить, насколько та или иная лампа помогает фотосинтезу, пользуются такой характеристикой, как PAR (Photosynthetic Active Radiation), то есть величина фотосинтетически активной радиации. PAR чем-то напоминает индекс цветопередачи, но последняя характеристика связана с эстетическим восприятием, а первая указывает на эффективность роста растений. К сожалению, эту величину указывают редко, лишь на специальных тепличных лампах. Измерить ее самостоятельно очень сложно, поскольку для этого вам придется получить полные спектральные характеристики лампы. Лампы с высоким значением PAR, то есть такие, под которыми растения находятся в благоприятных для них условиях, обладают низким CRI. Проще говоря, фитолампы искажают естественные цвета и дают слишком желтый цвет. Поэтому их можно применять во вспомогательных аквариумах, в тепличках, но не в декоративных водоемах.
Для хорошего роста растений применяйте лампы теплого света (2600-4000°К), у которых в спектре свечения есть пики на тех же участках, что и у хлорофилла в спектре поглощения. Для того, чтобы выявить красоту декоративного водоема, используйте лампы нейтрального белого света (6500-6800°К) с улучшенной цветопередачей. Под ними растения нормально развиваются. Такие лампы могут быть использованы в качестве основного и единственного источника света. Для того, чтобы проявить окраску рыб в полной мере, лучше использовать лампы холодного свечения (12000-18000°К). Они малопригодны для выращивания растений, потому что имеют низкую величину PAR. Если позволяют размеры водоема, то можно поближе к переднему стеклу установить лампу холодного свечения, а дальше, в центре и у задней стенки, лампы теплого свечения.
Раньше, когда не было никаких специальных ламп, а применялись лишь обычные лампы накаливания, растения имели нормальный рост. Это вполне легко понять, поскольку лампы накаливания действительно дают теплый свет, который способствует фотосинтезу. Их недостаток - в слабом свете по сравнению с современными люминесцентными лампами.
Сила света.
В каждой книге для начинающего аквариумиста вы найдете информацию, подобную следующей: "Аквариум следует освещать из расчета 1 Вт на каждые 2 л объема". Безусловно, новичку надо получить хоть какую-нибудь рекомендацию. Проблем у начинающего аквариумиста хватает, поэтому в первое время он не станет уточнять эти величины. Однако поднабравшись опыта, аквариумист прочтет, что "растения лучше растут, если мощность освещения достигает 1 Вт на 1 л". Можно также встретиться и с другими рекомендациями. К сожалению, они малообъективны, и придерживаться подобных советов или возражать против них бесполезно. В общем-то, ватты ничего не говорят о силе света, эта величина лишь показывает потребление тока лампой.
Какова сила света должна быть в аквариуме, чтобы эффективно происходил фотосинтез? Прежде всего, определимся, что такое сила света и освещенность, как они измеряются. В разговоре неспециалистов эти величины могут замещать друг друга. Сила света измеряется в канделах (cd). В переводе с латинского этот термин переводится как "свеча", так что источник в 1 канделу светит не очень ярко. Световой поток, создающий источник света в 1 канделу в 1 стеррадиане пространственного угла, называют 1 люменом. Такое определение может показаться сложным, однако оно правильное, на практике с этим измерением вам почти не придется встречаться. Зато люмен просто необходим для того, чтобы дать определение часто встречающейся величине люкс. Освещенность в 1 люкс создает световой поток в 1 люмен, падающий на площадку 1 м2: 1 люкс = 1 люмен/м2.
Силу освещения лампы в канделах указывают крайне редко, хотя эта величина свидетельствует о количестве света, которое излучает та или иная лампа. А нам это измерение необходимо для того, чтобы, зная потребности различных растений, рассчитать количество ламп и их мощность.
Очевидно, что освещенность снижается по мере удаления от лампы: это понятно из самого определения этой величины. Однако очень важно, чтобы аквариумист не забывал, что количество света измеряется на площади, а значит, по мере удаления от лампы освещенность начнет снижаться прямо пропорционально не расстоянию до лампы, а квадрату. То есть освещенность домашнего водоема глубиной 40 см в 2^2 = 4 раза ниже, чем освещенность на оде сосуда глубиной 20 см. Добавьте сюда еще поглощение света водой, которое трудно просчитать заранее, а также потери света на материале крышки аквариума.
Чтобы ориентироваться в том, какие растения более светолюбивы, а какие - менее, обратите внимание на эти данные:
Широколистные виды криптокорин > 50 люкс
Узколистные виды криптокорин < 400 люкс
Барклаи > 400 люкс
Лагенандры < 600 люкс
Анубиасы > 600 люкс
Акорусы < 800 люкс
Эхинодорусы > 800 люкс
Апоногетоны < 1000 люкс
Бакопы > 1000 люкс
Людвиги < 1200 люкс
Эгерии < 1200 люкс
Лимнофилы < 1500 люкс
Гигрофилы > 1500 люкс
Валлиснерии < 1700 люкс
Стрелолисты < 1700 люкс
Перистолистники > 1700 люкс
Кринумы < 2000 люкс
Кубышки < 2000 люкс
Эйхорнии > 2000 люкс
Оттелии < 2500 люкс
Сальвинии > 2500 люкс
Пистии < 3000 люкс
Нимфеи > 3000 люкс
Список начинают теневыносливые криптокорины, многим из которых необходимо небольшое количество света, благодаря чему они прекрасно выживают возле ручьев, протекающих под густым пологом леса. Чтобы защитить себя от яркого света, эти растения содержат в листьях много красного пигмента, придающего окраске листовой пластинки коричневые, красноватые и оливковые тона. Это характерно для многих растений, оказавшихся на ярком свету, а для нас они становятся привлекательными, заметными в коллекциях. Светолюбивые растения оказываются преимущественно зеленой окраски. Замыкают список плавающие на поверхности воды растения и нимфеи, листья которых также всегда стремятся к солнечным лучам.
Но как же измерить освещенность листьев аквариумных растений? Для этого существуют фотоэкспонометры, получившие широкое распространение во второй половине прошлого века, когда выдержку и диафрагму на фотоаппарате устанавливали вручную, в соответствии с чувствительностью пленки и условиями освещенности. Современные фотоаппараты выбирают режим съемки автоматически благодаря встроенным экспонометрам. Для измерения освещенности установите на экспонометре чувствительность пленки 100 единиц ISO (на старых фотоаппаратах это соответствует величинам ASA или 18 DIN). Затем откройте диафрагму до значения 2,8, направьте экспонометр на дно аквариума и приблизьте фотоаппарат вплотную к переднему стеклу.
Если экспонометр рекомендуют снимать при выдержке 1/8 секунды, то освещенность составляет 50 люкс;
если 1/15 секунды - то 130 люкс;
если 1/30 секунды - то 260 люкс;
если 1/60 секунды - то 540 люкс;
если 1/125 секунды - то 1100 люкс;
если 1/250 секунды - то 2 300 люкс;
если 1/500 секунды - то 3 200 люкс.
Прежде всего вам надо определиться, какие растения вам больше по душе - тенелюбивые криптокорины, мхи и анубиасы или яркая зелень светолюбивых растений. Единых рекомендаций здесь быть не может.
Заканчивая рассказ о силе света, нам следует вернуться к информации о спектре. Спектральная кривая - это не что иное, как сила света в отдельных частях спектра. Теперь попробуем решить несложную логическую задачу: нам понравились лампы, способствующие фотосинтезу, а значит и росту растений, с высоким значением PAR. Но такие лампы, к сожалению, обладают плохой цветопередачей, низким CRI. Лампы с хорошей цветопередачей, напротив, имеют низкое значение PAR. Изменить CRI прибора мы не можем, поэтому аквариумисты используют лампы разной мощности. Если в домашнем водоеме, несмотря на общие рекомендации, применить более мощные лампы, то часть спектра, необходимого для фотосинтеза, будет перекрыта. В таком случае аквариум будет освещен выбранным вами спектром, а растения получат необходимую энергию для фотосинтеза. Иными словами, вместо того, чтобы гоняться за лампами с замысловатым спектром, лучше увеличить их количество в аквариуме.